
rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the internal kinetic
energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it, too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-
dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

PHET EXPLORATIONS

Collision Lab
Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial
conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Click to view content (https://phet.colorado.edu/sims/collision-lab/collision-lab_en.html)

Figure 8.7

8.5 Inelastic Collisions in One Dimension
We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal
kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may
remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For
inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy
into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite
from its launch vehicle.

Figure 8.8 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal
speeds and then stick together. Their total internal kinetic energy is initially . The two objects come to
rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in
which the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy
more than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it
can have while still conserving momentum.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision
Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice
cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and observe
the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating ice
cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using
momentum.

Inelastic Collision
An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Perfectly Inelastic Collision
A collision in which the objects stick together is sometimes called “perfectly inelastic.”
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Figure 8.8 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two

objects of equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic

collision), and so their final velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to

zero in this example.

EXAMPLE 8.5

Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck and a Goalie
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at
a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-
goalie system is negligible. (See Figure 8.9 )

Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely

converted to thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that the
final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated before
and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

or
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Because the goalie is initially at rest, we know . Because the goalie catches the puck, the final velocities are equal, or
. Thus, the conservation of momentum equation simplifies to

Solving for yields

Entering known values in this equation, we get

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy of the system is that of the hockey puck, because the goalie is initially at
rest. Therefore, is initially

After the collision, the internal kinetic energy is

The change in internal kinetic energy is thus

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. is mostly converted to thermal
energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as happens in
most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a collision. Figure
8.10 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy from a compressed
spring. Example 8.6 deals with data from such a collision.
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Figure 8.10 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in

Example 8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let
us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet
will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a softball
bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the impact
occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries such as
tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact are
minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts such as
momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle.

Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold
the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure how
high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your observations
and measurements.

2. The coefficient of restitution is a measure of the elasticity of a collision between a ball and an object, and is defined
as the ratio of the speeds after and before the collision. A perfectly elastic collision has a of 1. For a ball bouncing off
the floor (or a racquet on the floor), can be shown to be where is the height to which the ball bounces
and is the height from which the ball is dropped. Determine for the cases in Part 1 and for the case of a tennis ball
bouncing off a concrete or wooden floor ( for new tennis balls used on a tennis court).
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EXAMPLE 8.6

Calculating Final Velocity and Energy Release: Two Carts Collide
In the collision pictured in Figure 8.10, two carts collide inelastically. Cart 1 (denoted carries a spring which is initially
compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass of
cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of . Cart 2 (denoted in
Figure 8.10) has a mass of 0.500 kg and an initial velocity of . After the collision, cart 1 is observed to recoil with a
velocity of . (a) What is the final velocity of cart 2? (b) How much energy was released by the spring (assuming all of it
was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because (the track is frictionless and the
force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and after the
collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

The only unknown in this equation is . Solving for and substituting known values into the previous equation yields

Solution for (b)

The internal kinetic energy before the collision is

After the collision, the internal kinetic energy is

The change in internal kinetic energy is thus

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic
energy in this collision increases by 5.46 J. That energy was released by the spring.

8.6 Collisions of Point Masses in Two Dimensions
In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to
the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
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